

Modified calcium hexaaluminate with La₂Ce₂O₇ and corrosion resistance to cathode materials for lithium-ion batteries

Han Zhang¹, Guanyu Wang¹, Tianpeng Wen¹,*

Received 18 June 2025; Received in revised form 27 August 2025; Accepted 20 September 2025

Abstract

In the present work calcium hexaaluminate (CA_6) was modified with different amounts of $La_2Ce_2O_7$ to improve sintering and explore its application possibility as the saggers for lithium-ion battery cathode material. It was found that the addition of $La_2Ce_2O_7$ causes incorporation of La^{3+} and Ce^{4+} ions into the CA_6 grains accompanied by the formation of cation vacancy defects. Such behaviour greatly supported the CA_6 grains to grow along the direction perpendicular to the basal plane and improved the densification of CA_6 materials. Typically, the bulk density of CA_6 with 6.0 wt.% $La_2Ce_2O_7$ addition exceeded 3.50 g/cm³ and the apparent porosity decreased to below 3%. Moreover, the decrease in apparent porosity reduced the effective area between the Li^+ and CA_6 as well as inhibited the penetration of Li^+ , leading to the improvement in the corrosion resistance and service life.

Keywords: $CaAl_{12}O_{19}$, $La_2Ce_2O_7$, sintering, lithium-ion battery cathode materials, corrosion resistance

I. Introduction

With the rapid development of the global economy and the extensive exploitation of non-renewable resources such as oil and coal, governments over the world are constantly seeking alternative new energy sources. Lithiumion batteries have attracted widespread attention due to their advantages such as high specific energy, low selfdischarge, fine cycling performance, no memory effect and green environmental protection, being currently considered to be the most promising high-efficiency secondary battery and the fastest developing chemical energy storage power source [1-4]. For lithium-ion batteries, the cathode is the main donor of lithium ions (Li⁺) in battery systems, and therefore plays an important role in determining battery capacity, thermal stability and potential [5–8]. In other words, the development of cathode materials with advantages such as safety, economy, high performance and large capacity will effectively promote the widespread application of lithium-ion batteries.

At present, the mature cathode materials for application in lithium-ion batteries mainly include layered ox-

*Corresponding author: +86 24 83681576 e-mail: wentianpeng@smm.neu.edu.cn ide materials such as Li_xMO_2 (M = Co, Mn, Ni), olivine type materials such as LiFePO₄ and spinel materials such as LiMn₂O₄ [9–14]. Solid phase sintering method is more favoured for the synthesis of cathode materials due to its simple process equipment and shorter production cycle. In the process of sintering cathode materials for lithium-ion batteries, it is necessary to select suitable saggers to improve the production efficiency of cathode materials, reduce the production costs and improve the production environment. Currently, oxide saggers such as cordierite, mullite and corundum are commonly used [15–17]. However, cordierite is easily corroded due to the strong alkalinity and corrosiveness of the lithium containing cathode materials, causing harmful impurities in the crucible and leading to a decrease in the quality of the cathode material. For the mullite, high silicon content and weak alkali resistance result in the peeling off of the material and mixing with the positive electrode material after long time use, affecting the purity of cathode materials. The alumina saggers are prone to cracking during the sintering process owing to the high thermal expansion coefficient of alumina, which declines its service life. Therefore, it is still a challenge to develop novel saggers to ensure the performance of lithium-ion battery cathode materials.

¹School of Metallurgy, Northeastern University, Shenyang, 110819, Liaoning, China

²Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang, 110819, Liaoning, China

Calcium hexaaluminate (CaAl₁₂O₁₉, CA₆) has been widely used in metallurgy, petrochemical and other fields due to its unique physical and chemical properties, including high melting point, excellent high temperature mechanical properties and chemical stability [18-23]. Recently, CA₆ exhibited the potential as the saggers for preparation of lithium-ion battery cathode materials based on its strong corrosion resistance under alkaline conditions [24,25]. However, the reaction between the components accompanied by volume expansion effect during the process of preparing CA₆ and its special platelet or plate-like particles inhibit the sinterability, densification process and mechanical properties [26–29]. Therefore, it is difficult for sintered CA₆ to reach full density even at high temperature and after multiple sintering. For this reason, the reaction sintered CA₆ material tends to have high porosity and may easily be corroded by the cathode materials of the lithium-ion battery, greatly reducing its service life and the purity of cathode materials. Consequently, high demands are urgently required for the dense and quality CA₆ materials used as the saggers for preparing the lithium-ion battery cathode materials.

Nowadays, numerous studies have looked at doping with small amount of metal cations to modify the structure of CA₆ and improve the comprehensive properties [22,23,30-36]. It has been found that the doped metal cations can substitute Ca²⁺ or Al³⁺ to form more defects in the structure of CA₆, promoting sintering and increasing the comprehensive properties. Although several studies have been done with metal cations as dopants in CA₆, the effect of composite additives and the coupling effect of two metal cations on its properties have not been explored. More importantly, there is little research on the modification of CA₆ as saggers for smelting the lithium-ion battery cathode materials, especially regarding the interfacial reaction and element migration behaviour between CA₆ saggers and lithiumion battery cathode materials. Therefore, in the present work for the first time the effect of La₂Ce₂O₇ addition on structure evolution of CA₆ during sintering has been investigated. Subsequently, this work focused on the interfacial reaction characteristics between the CA₆ saggers and LiMn₂O₄ cathode materials, aiming to clarify the corrosion behaviour and mechanism of LiMn₂O₄ cathode materials in contact with CA₆ materials. This work will contribute to the application of CA₆ used as the saggers for smelting the lithium-ion batteries cathode materials and improve the corrosion resistance and service life of the saggers.

II. Experimental

2.1. Synthesis of $La_2Ce_2O_7$ particles

 La_2O_3 (purity $\geq 99.99\%$, Sinopharm Chemical Reagent Co. Ltd.), and CeO_2 (purity $\geq 99.95\%$, Sinopharm Chemical Reagent Co. Ltd.) were used as raw materials to synthesize the $La_2Ce_2O_7$ particles

by high temperature method. The La_2O_3 and CeO_2 mixture with the molar ratio of 1:1 was ball milled in ethanol for 6 h and then the obtained slurry was dried at 90 °C. Subsequently, the obtained La_2O_3 and CeO_2 mixture was uniaxially pressed into pellets with the diameter of 20 mm and the thickness of 20 mm under a pressure of 200 MPa, then the pellets were sintered at the peak temperature of 1600 °C for 5 h in air with the heating rate of 5 °C/min. Finally, the sintered pellets were crushed and ball milled for 2 h to obtain the $La_2Ce_2O_7$ powder.

2.2. Preparation of CA₆ materials

The Al_2O_3 (purity $\geq 99.0\%$, Sinopharm Chemical Reagent Co. Ltd.), CaCO₃ (purity ≥99.0%, Sinopharm Chemical Reagent Co. Ltd.) and the synthesized La₂Ce₂O₇ powders were employed as starting materials. The Al₂O₃ and CaCO₃ mixture (molar ratio of 6:1) was ball milled in ethanol for 4h and then obtained slurry was dried at 90 °C. Subsequently, the obtained powders were pressed uniaxially into pellets with diameter of 30 mm and thickness of 30 mm under a pressure of 300 MPa and heat treated at 1200 °C for 1 h. The obtained samples were crushed to obtain the presynthesized raw materials with the powder size less than 75 µm. Furthermore, La₂Ce₂O₇ powder was introduced into the pre-synthesized raw materials with varying contents of 0, 2.0, 4.0 and 6.0 wt.%, corresponding to the samples denoted as CA-0, CA-2, CA-4 and CA-6, respectively. The mixed powders were repressed uniaxially into pellets with diameter of 20 mm and thickness of 20 mm at 100 MPa. Finally, the pellets were sintered at the peak temperature of 1600 °C for 2h in air with the heating rate of 5 °C/min and then the samples were naturally cooled inside the furnace to room temperature.

2.3. Interfacial reaction between LiMn₂O₄ and CA₆

Li₂CO₃ (purity \geq 98.0%, Sinopharm Chemical Reagent Co. Ltd.) and MnO₂ (purity \geq 91.0%, Sinopharm Chemical Reagent Co. Ltd.) were employed as the precursors for preparation of the LiMn₂O₄ cathode materials. Static crucible method was selected to investigate the interfacial reaction between LiMn₂O₄ and CA₆ materials. The Li₂CO₃ and MnO₂ precursors with the molar ratio of 1:4 were placed on the surface of CA₆ pellet and then sintered at the peak temperature of 800 °C for 10 h in air with the heating rate of 5 °C/min. To analyse the corrosion behaviour the obtained sample was 10 times heated at 800 °C with dwell of 10 h.

2.4. Characterization

The densification parameters in terms of bulk density and apparent porosity of the sintered samples were measured via the Archimedes principle based on water as the medium. The phase compositions of the sintered and corroded samples were detected using X-ray diffraction (XRD, Model D500, Siemens, Germany) using Cu K α radiation. The microstructure was examined by using

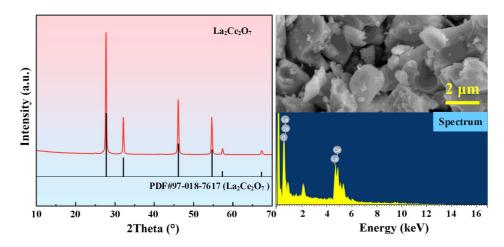


Figure 1. Phase composition and microstructure analysis of the synthesized La₂Ce₂O₇ powder

field emission scanning electron microscopy (FE-SEM, Model Ultra Plus, ZEISS, Germany) and transmission electron microscope (TEM, JEM-F200(HRP), Japan), and the elemental distribution was analysed by using the energy dispersive spectroscopy (EDS, Oxford, UK).

III. Results and discussion

3.1. Phase composition

Figure 1 shows the phase composition and microstructure analysis of the synthesized $La_2Ce_2O_7$ powder. According to the XRD phase identification results, single $La_2Ce_2O_7$ phase was observed with no observable impurity phase. Combining with the SEM image and EDS analysis, it was determined that the pure $La_2Ce_2O_7$ was successfully synthesized and can be used as the additive for CA_6 materials.

Figure 2 presents XRD patterns of the prepared CA₆ samples with various La₂Ce₂O₇ contents. As it can be seen, CA₆ was indexed as the main crys-

talline phase with a few observable XRD peaks of CA₂ (CaAl₄O₇) and Al₂O₃ phases in the sample CA-0 without La₂Ce₂O₇ addition. With the introduction of La₂Ce₂O₇, the Al₂O₃ phase further reacted with the CA₂ to form CA₆ phase. Meanwhile, the Al₂O₃ phase would also react with added La₂Ce₂O₇, forming LaAl₁₁O₁₈ and CeO₂ phases resulting in lack of detection of Al₂O₃ in the CA₆ samples with higher amount of La₂Ce₂O₇. In addition, a decrease in the diffraction peak of the CA₂ phase was also observed. Moreover, the CA₆ peaks exhibited a shift to lower 2θ values with increasing the La₂Ce₂O₇ addition from 0 to 6.0 wt.%, suggesting the uniform solid solution formation in the CA₆ samples with La₂Ce₂O₇ addition. Previous studies [23,23,30–36] have shown that the CA₆ lattices are good host structures to form solid solutions by replacing Al³⁺ with Fe³⁺, Ti⁴⁺, Zr⁴⁺, etc. and Ca²⁺ with either alkalineearth or rare-earth cations of similar radii. Based on the fact that cations Ca^{2+} (1.0 Å), Al^{3+} (0.53 Å), Ce^{4+} (0.97 Å) and La³⁺ (1.032 Å) have different radii, the in-

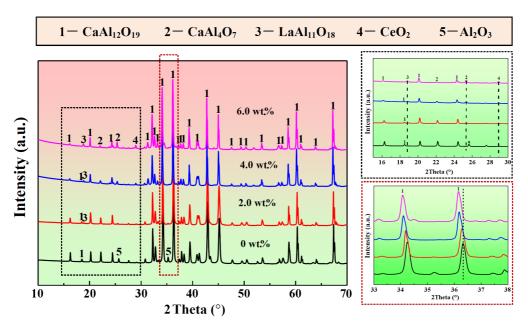


Figure 2. XRD spectra of the prepared CA₆ samples with various La₂Ce₂O₇ contents

troduced Ce^{4+} could substitute Al^{3+} in the spinel block of CA_6 lattice and the La^{3+} could substitute Ca^{2+} in the mirror layers of CA_6 lattice, along with the formation of V_{Al}^{\bullet} and V_{Ca}^{\bullet} vacancies according to Pauling's rule. Such behaviour was consistent with the previous research results [31,35,37]. The defect reactions in the CA_6 samples containing $La_2Ce_2O_7$ can be written as follows:

$$Ce^{4+} \xrightarrow{CA_6} Ce_{Al}^+ + V_{Al}^{\bullet}$$
 (1)

$$La^{3+} \xrightarrow{CA_6} La_{Ca}^+ + V_{Al}^{\bullet}$$
 (2)

Schematic diagram of ion migration in CA₆ lattice is presented in Fig. 3. It is worth noting that only part of Ce⁴⁺ is incorporated in the CA₆ lattice since CeO₂

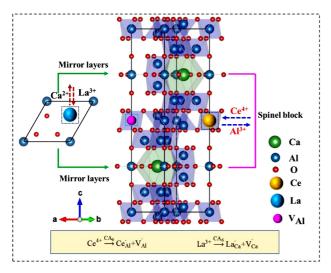


Figure 3. Schematic diagram of ion migration in CA₆ lattice

diffraction peaks were still detected in the XRD pattern of the CA-6 sample (Fig. 2), indicating that residual CeO₂ phase still existed in the CA₆ material.

3.2. Microstructure

Figure 4 displays SEM images of the sintered CA₆ samples with different La₂Ce₂O₇ addition. Generally, during formation CA₆ grains were exposed to high surface/interface energy anisotropy due to the low surface energy of the basal plane, driving a preferential grain growth along their basal plane (perpendicular to caxes) [37]. Such behaviour continued until the elongated grains impinged upon each other. As a result, a typical platelet structure was observed in the CA₆ grains for the sample without La₂Ce₂O₇ addition, leading to the formation of the porous network. When La₂Ce₂O₇ was added to the CA₆ samples, the CA₆ grains transformed from platelet structure to hexagonal columnar equiaxed structure. This observation can be explained with the fact that the introduced La₂Ce₂O₇ could be dissolved into the CA_6 lattice to form uniform solid solution, namely, Ce^{4+} would substitute Al^{3+} in the spinel block of CA_6 lattice and the La^{3+} would substitute Ca^{2+} in the mirror layers of CA₆ lattice. The formation of the solid solution induced the structural modifications in the CA₆ lattice, thereby enhancing the O2 diffusion rate along the c-axis, greatly supporting the CA₆ grains to grow along the direction perpendicular to the basal plane (c-axes). Furthermore, this positive effect was greatly promoted with the increase of La₂Ce₂O₇ content. For example, the CA₆ grains exhibited equiaxed morphologies with curved boundaries in the sample CA-6 with 6.0 wt.% of La₂Ce₂O₇, conducing to eliminate pores and form

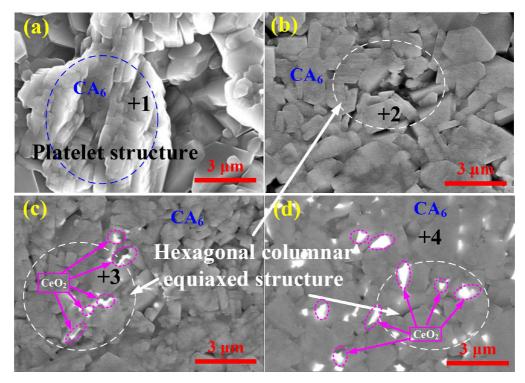


Figure 4. SEM images of the sintered samples: a) CA-0, b) CA-2, c) CA-4 and d) CA-6

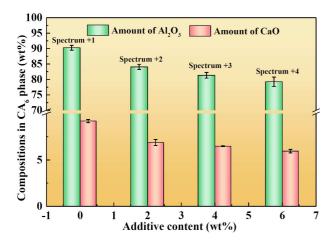


Figure 5. Variation of the amount of Al₂O₃ and CaO in CA₆ lattices as function of La₂Ce₂O₇ content

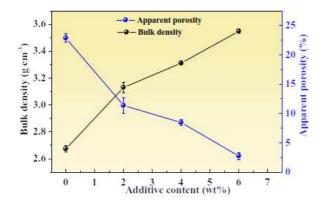


Figure 6. Variation in the apparent porosity and bulk density as function of $La_2Ce_2O_7$ content

highly dense structure. Moreover, CeO_2 will accumulate at the grain boundaries of CA_6 grains at high concentrations of additives, which would also contribute to the improvement in densification. To further verify the effect of $La_2Ce_2O_7$ on the CA_6 materials, the variation

of the amounts of Al_2O_3 and CaO in the CA_6 lattices as function of $La_2Ce_2O_7$ content is given in Fig. 5. As it was expected, there is a significant decrease of Al_2O_3 and CaO amounts in the samples with $La_2Ce_2O_7$ addition, suggesting that La^{3+} and Ce^{4+} were dissolved into the CA_6 lattice.

Figure 6 presents the variation in the apparent porosity and bulk density of the sintered samples as function of La₂Ce₂O₇ addition. High apparent porosity exceeded 20% and corresponding low bulk density was observed for the sample CA-0 without La₂Ce₂O₇ addition, indicating the low sinterability due to slow diffusion rate of ions. When La₂Ce₂O₇ was introduced into the CA₆ samples, sintering process was greatly improved, with a trend of increasing relative density and decreasing apparent porosity. Typically, the bulk density reached 3.55 g/cm³ while achieving an apparent porosity of only 2.75% when 6.0 wt.% La₂Ce₂O₇ was added to the CA₆ structure. Combined with the phase composition and microstructural evolution characteristics, the formation of the solid solution induced the structural modifications in the CA₆ lattice when the La₂Ce₂O₇ was introduced.

3.3. Interfacial reaction between LiMn₂O₄ and CA₆

Since the introduction of $La_2Ce_2O_7$ significantly improves the densification of CA_6 , it was expected that this modified CA_6 material can be used as the saggers for preparing the lithium-ion battery cathode. Figure 7 displays XRD pattern, SEM and TEM images of the synthesized $LiMn_2O_4$ cathode material used as CA_6 saggers. The results indicate that the $LiMn_2O_4$ cathode materials were successfully prepared with Li_2CO_3 and MnO_2 as the raw materials at $800\,^{\circ}C$ through the following reaction:

$$2 \operatorname{Li_2CO_3} + 8 \operatorname{MnO_2} \longrightarrow 4 \operatorname{LiMn_2O_4} + 2 \operatorname{CO_2} + \operatorname{O_2}$$
 (3)

To ensure the stability of the CA₆ saggers, the corrosion behaviour of CA₆ saggers during the smelting process of the LiMn₂O₄ cathode was investigated. XRD

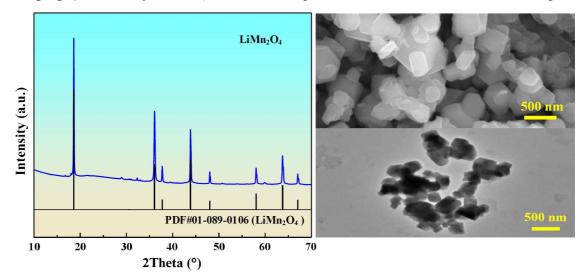


Figure 7. Phase composition and microstructure analysis of the synthesized LiMn₂O₄ cathode material

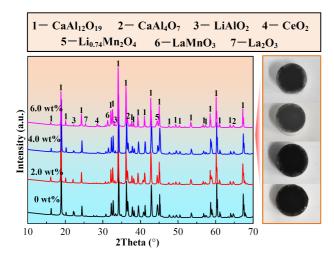


Figure 8. XRD spectra of the $CA_6/LiMn_2O_4$ samples after the corrosion test

spectra of the CA₆/LiMn₂O₄ samples after the corrosion test are depicted in Fig. 8. The analysis results reveal that Li_{0.72}Mn₂O₄, LiAlO₂ and CaAl₄O₇ phases are observed in the XRD patterns beside the CA₆ phase after the corrosion test. Simultaneously with the formation of LiMn₂O₄ according to reaction 3, Li⁺ penetrates into the interior of the CA₆ material along the interface and reacted with CA6 to form LiAlO2 phase, accompanied by the formation of CaAl₄O₇. Moreover, the LiMn₂O₄ will be further oxidized to Li_{0.74}Mn₂O₄ in the air, accompanied by the formation of by-product Li₂O, which could also react with CA₆ to form LiAlO₂, causing structural changes in the materials and ultimately resulting in damage. The whole reaction process in the corrosion layer can be represented by the following reactions:

$$CaAl12O19 + 4 Li2CO3 \longrightarrow 8 LiAlO2 + CaAl4O7 + + 4 CO2 (4)$$

$$\begin{array}{c} LiMn_{2}O_{4} + 0.07O_{2} \longrightarrow Li_{0.72}Mn_{2}O_{4} + \\ & + 0.14Li_{2}O_{7} \end{array} \tag{5}$$

$$CaAl_{12}O_{19} + 4Li_2O \longrightarrow 8LiAlO_2 + CaAl_4O_7$$
 (6)

After introducing $La_2Ce_2O_7$ to modify CA_6 materials, it was found that the diffraction peak intensities of $Li_{0.72}Mn_2O_4$, $LiAlO_2$ and $CaAl_4O_7$ phases in the XRD patterns were reduced, indicating that the reaction between Li^+ and CA_6 was inhibited. In other words, the corrosion resistance of the modified CA_6 was improved and more pronounced for the sample with higher $La_2Ce_2O_7$ content.

SEM-EDS analysis of the CA-0/LiMn₂O₄ and CA-6/LiMn₂O₄ samples after the corrosion test is illustrated in Fig. 9. As it can be seen, the corrosion layer composed of reaction layer and penetration layer was observed. For the CA₆ sample with 6.0 wt.% of La₂Ce₂O₇ (Fig. 9b), the thickness of corrosion layer (about 3.0 μm) is obviously thinner than that of the sample CA-0/LiMn₂O₄ without additives (about 20.0 μm). This observation was attributed to the decrease in apparent porosity of the modified CA₆ materials. On one hand, the decrease in apparent porosity reduced the effective area between the Li⁺ and CA₆ materials [38], thereby reducing the reactivity between the LiMn₂O₄ cathode and the CA₆. On the other hand, the penetration of Li⁺ into the interior of the CA₆ material was inhibited owing to the reduced Li⁺ penetration channels caused by low apparent porosity. Meanwhile, the improvement of thermal shock resistance of the CA₆ ma-

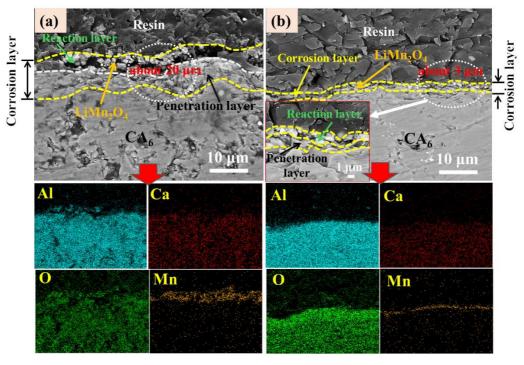


Figure 9. SEM-EDS analysis of the CA-0/LiMn₂O₄ and CA-6/LiMn₂O₄ samples after the corrosion test

terial reduced the dissolution of the CA_6 materials in the cathode material. The above behaviour would improve the corrosion resistance of the CA_6 material used as the saggers for preparing the lithium-ion battery cathode materials. In summary, low porosity and excellent thermal shock resistance gave the synergistic effect for improving the corrosion resistance of the CA_6 materials with $La_2Ce_2O_7$ additives.

IV. Conclusions

The present work investigated the effect of La₂Ce₂O₇ addition on structure evolution of CA₆ during sintering, aiming to achieve the modified CA₆ materials with improved densification. In addition, the interfacial reactions between the CA₆ saggers and LiMn₂O₄ cathode material were analysed to further clarify the corrosion behaviour LiMn₂O₄ cathode on the CA₆ materials. The results indicate that the La³⁺ and Ce⁴⁺ are incorporated into the CA₆ grains during sintering substituting Al³⁺ in the spinel block and Ca2+ in the mirror layers of the CA₆ lattice, respectively. These substitutions cause the formation of cation vacancies which greatly supported the CA₆ grains to grow along the direction perpendicular to the basal plane and improved the densification of CA₆ material. Typically, the relative density of CA₆ with 6.0 wt.% La₂Ce₂O₇ exceeded 90 %TD and the apparent porosity decreased to below 3%. Moreover, the decrease in apparent porosity reduced the effective area between the Li⁺ and CA₆ as well as inhibited the penetration of Li⁺, leading to the improvement in the corrosion resistance and service life and promoting its better application as the saggers for preparing the lithium-ion battery cathode.

Acknowledgement: This work was financially supported by the National Natural Science Foundation of China (No. 52204337), National Key Research and Development Program of China (2021YFB3701404), Liaoning Provincial Natural Science Foundation Joint Fund (General Support Program Project) (2023-MSBA-048) and the Fundamental Research Funds for the Central Universities (No. N2225035).

References

- S. Kainat, J. Anwer, A. Hamid, N. Gull, S.M. Khan, "Electrolytes in lithium-ion batteries: advancements in the Era of Twenties (2020's)", *Mater. Chem. Phys.*, 313 (2024) 128796.
- M.H. Shi, Y.H. Ren, J.Y. Cao, Z.Y. Kuang, X.J. Zhuo, H. Xie, "Current situation and development prospects of discharge pretreatment during recycling of lithium-ion batteries: A review", *Batteries Supercaps*, 7 (2024) e202300477.
- D.Y. Chen, Q. Zhao, Y. Zheng, Y.Z. Xu, Y.H. Chen, J.H. Ni, Y. Zhao, "Recent progress in lithium-ion battery safety monitoring based on fiber bragg grating sensors", *Sensors*, 23 (2023) 5609.
- 4. J.H. Lim, D. Koh, S. Kolluri, M. Uppaluri, A. Subramaniam, V.R. Subramanian, "Efficient electrochemical state

- of health model for lithium-ion batteries under storage conditions", *J. Phys. Chem. C*, **127** (2023) 2183–2193.
- P.K. Alaboina, M.J. Uddin, S.J. Cho, "Nanoprocess and nanoscale surface functionalization on cathode materials for advanced lithium-ion batteries", *Nanoscale*, 9 [41] (2017) 15736–15752.
- P.Y. Guan, L. Zhou, Z.L. Yu, Y.D. Sun, Y.J. Liu, F.X. Wu, Y.F. Jiang, D.W. Chu, "Recent progress of surface coating on cathode materials for high-performance lithium ion batteries", *J. Energy Chem.*, 43 (2020) 220–235.
- M.S. Islam, C.A.J. Fisher, "Lithium and sodium battery cathode materials: Computational insights into voltage, diffusion and nanostructural properties", *Chem. Soc. Rev.*, 43 [1] (2014) 185–204.
- 8. P.C. Zhu, D. Gastol, J. Marshall, R. Sommerville, V. Goodship, E. Kendrick, "A review of current collectors for lithium-ion batteries", *J. Power Sources*, **485** (2021) 229321.
- 9. X.X. Liu, Y.C. Tan, W.Y. Wang, C.H. Li, Z.W. Seh, L. Wang, Y.M. Sun, "Conformal prelithiation nanoshell on LiCoO₂ enabling high-energy lithium-ion batteries", *Nano Lett.*, **20** [6] (2020) 4558–4565.
- X.Q. Ji, Q. Xia, Y.X. Xu, H.L. Feng, P.F. Wang, Q.Q. Tan, "A review on progress of lithium-rich manganese-based cathodes for lithium ion batteries", *J. Power Sources*, 487 (2021) 229362.
- 11. J. Zhu, G.L. Cao, Y.J Li, X.M. Xi, Z.M. Jin, B. Xu, W. Li, "Efficient utilisation of rod-like nickel oxalate in lithiumion batteries: A case of NiO for the anode and LiNiO₂ for the cathode", *Scr. Mater.*, **178** (2020) 51–56.
- C.L. Qin, Y.W. Li, S.X. Lv, J.Y. Xiang, C.L. Wang, X.G. Zhang, S. Qiu, G. Yushin, "Enhancing electrochemical performance of LiFePO₄ by vacuum-infiltration into expanded graphite for aqueous Li-ion capacitors", *Electrochim. Acta*, 253 (2017) 413–421.
- 13. X.B. Zhu, T.G. Lin, E. Manning, Y.C. Zhang, M.M. Yu, B. Zuo, L.Z. Wang, "Recent advances on Fe- and Mn-based cathode materials for lithium and sodium ion batteries", *J. Nanopart. Res.*, **20** (2018) 160.
- R.Z. Yu, X.H. Zhang, T. Liu, L. Yang, L. Liu, Y. Wang, X.Y. Wang, H.B. Shu, X.K. Yang, "Spinel/layered heterostructured lithium-rich oxide nanowires as cathode material for high-energy lithium-ion batteries", ACS Appl. Mater. Interfaces, 9 (2017) 41210–41223.
- 15. P.T. Zhai, L.G. Chen, Y.M. Yin, S.P. Li, D.F. Ding, G.T. Ye, "Interactions between mullite saggar refractories and Liion battery cathode materials during calcination", *J. Eur. Ceram. Soc.*, **38** [4] (2018) 2145–2151.
- K. Xiang, S.J. Li, Y.B. Li, H.L. Wang, R.F. Xiang, "Interactions of Li₂O volatilized from ternary lithium-ion battery cathode materials with mullite saggar materials during calcination", *Ceram. Int.*, 48 [16] (2022) 23341–23347.
- H.P.A. Alves, R.A. Junior, L.F.A. Campos, R.P.S. Dutra, J.P.F. Grilo, F.J.A. Loureiro, D.A. Macedo, "Structural study of mullite based ceramics derived from a mica-rich kaolin waste", *Ceram. Int.*, 43 [4] (2017) 3919–3922.
- 18. A. Altay, C.B. Carter, P. Rulis, W.-Y. Ching, I. Arslan, M.A. Gülgün, "Characterizing CA₂ and CA₆ using ELNES", *J. Solid State Chem.*, **183** [8] (2010) 1776–1784.
- V.K. Singh, K.K. Sharma, "Low-temperature synthesis of calcium hexa-aluminate", *J. Am. Ceram. Soc.*, 85 [4] (2002) 769–772.
- 20. L.C. Xu, E.H. Wang, X.M. Hou, J.H. Chen, Z.J. He, T.X.

- Liang, "Effect of incorporation of nitrogen on calcium hexaaluminate", *J. Eur. Ceram. Soc.*, **40** [15] (2020) 6155–6161.
- 21. C. Dominguez, J. Chevalier, R. Torrecillas, L. Gremillard, G. Fantozzi, "Thermomechanical properties and fracture mechanisms of calcium hexaluminate", *J. Eur. Ceram. Soc.*, **21** (2001) 907–917.
- T.P. Wen, Y. Jin, J.K. Yu, Z.G. Yan, Z.Y. Liu, L. Yuan, "Effect of Nb₂O₅ additive on the sintering behavior and properties of calcium hexaluminate", *Constr. Build. Mater.*, 385 (2023) 131534.
- T.P. Wen, Y. Jin, Z.G. Yan, Z.Y. Liu, J.K. Yu, L. Yuan, G. Yuan, "Optimization design of Ta₂O₅-doped calcium hexaaluminate with improved sintering densification and properties for metallurgical application", *J. Alloys Compd.*, 945 (2023) 169297.
- H.L. Wang, Y.B. Li, X.H. He, B. Yin, R.F. Xiang, S.J. Li, S.Q. Li, "Anti-corrosion effect of insulating firebrick coated with CA₆ in the calcination of lithium-ion cathode materials", *Ceram. Int.*, 48 (2022) 36723–36730.
- 25. C.Q. Gan, H. Zhang, H.Z. Zhao, Y. Zhang, H.H. He, "Firing properties and erosion resistance of hibonite-cordierite sagger", *Ceram. Int.*, **48** [20] (2022) 30589–30597.
- A.G. Ersson, E.M. Johansson, S.G. Järås, "Techniques for preparation of manganese-substituted lanthanum hexaaluminates", *Stud. Surf. Sci. Catal.*, 118 (1998) 601–608.
- 27. D. Asmi, I.M. Low, "Physical and mechanical characteristics of in-situ alumina/calcium hexaluminate composites", *J. Mater. Sci. Lett.*, **17** (1998) 1735–1738.
- V.K. Singh, K.K. Sharma, "Low-temperature synthesis of calcium hexa-aluminate". *J. Am. Ceram. Soc.*, 85 [4] (2002) 769-772.
- 29. L. Xu, M. Chen, L.Y. Jin, X.L. Yin, N. Wang, L. Liu, "Ef-

- fect of ZrO₂ addition on densification and mechanical properties of MgAl₂O₄-CaAl₄O₇-CaAl₁₂O₁₉ composite", *J. Am. Ceram. Soc.*, **98** (2015) 4117–4223.
- 30. J.H. Chen, H.Y. Chen, W.J. Mi, Z. Cao, B. Li, C.J. Liang, "Substitution of Ba for ca in the structure of CaAl₁₂O₁₉", *J. Am. Ceram. Soc.*, **100** [1] (2017) 413–418.
- 31. Z. Cormack, "Defects in BaMgAl₁₀O₁₇: Eu²⁺ blue phosphor", *J. Electroceram.*, **10** [3] (2003) 179–191.
- 32. P.M. Doyle, P.F. Schofield, A.J. Berry, A.M. Walker, K.S. Knight, "Substitution of Ti³⁺ and Ti⁴⁺ in hibonite (CaAl₁₂O₁₉)", *Am. Mineral.*, **99** [7] (2014) 1369–1382.
- L. Liu, T. Onda, Z. Chen, "Microstructural evolution of Ti⁴⁺-doped calcium hexaaluminate ceramics", *Ceram. Int.*, 46 (2020) 12897–12901.
- 34. J. Lu, Y.X. Pan, J.G. Wang, X.A. Chen, S.M. Huang, G.K. Liu, "Reduction of Mn⁴⁺ to Mn²⁺ in CaAl₁₂O₁₉ by codoping charge compensators to obtain tunable photoluminescence", *RSC Adv.*, **3** [14] (2013) 4510–4513.
- 35. T.P. Wen, L. Yuan, E.D. Jin, T. Liu, C. Tian, J.K. Yu, "Effect of CeO₂ addition on the sintering behavior of the alumina-rich calcium aluminate ceramics", *Int. J. Appl. Ceram. Technol.*, **17** (2020) 1761–1768.
- L. Xu, M. Chen, X.L. Yin, L. Liu, "Effect of TiO₂ addition on densification and mechanical properties of MgAl₂O₄-CaAl₄O₇-CaAl₁₂O₁₉ composite", *Ceram. Int.*, **42** [12] (2015) 9844–9850.
- 37. M.K. Cinibulk, "Hexaluminates as a cleavable fiber-matrix interphase: synthesis, texture development, and phase compatibility", *J. Eur. Ceram. Soc.*, **20** (2000) 569–582.
- 38. P. Ji, Z. Liu, G.C. Zhang, Z.J. Peng, J.K. Yu, L. Yuan, "Effects of La₂Ce₂O₇ on the phase composition, microstructure, wetting behaviour and corrosion resistance of magnesia refractory", *J. Alloys Compd.*, **1010** (2025) 177390.